For Admission

Excellence Academy
Starts: 01 June, 2014
Duration : 18 Weeks
Instructors: Physics
Phone : +91 7738376010
Fax: +91 8129789090
Email : [email protected]

The Graduate Aptitude Test in Engineering (GATE) is an all-India examination that primarily tests the comprehensive understanding of various undergraduate subjects in engineering and science. GATE is conducted jointly by the Indian Institute of Science and seven Indian Institutes of Technology (IIT Bombay, IIT Delhi, IIT Guwahati, IIT Kanpur, IIT Kharagpur, IIT Madras and IIT Roorkee) on behalf of the National Coordination Board – GATE, Department of Higher Education, Ministry of Human Resources Development (MHRD), Government of India.

The GATE score scored by a candidate reflects the relative performance level of a candidate. The score is used for admissions to various post-graduate programs (e.g. Master of Engineering, Master of Technology, Doctor of Philosophy) in Indian higher education institutes, with financial assistance provided by MHRD and other government agencies. Recently, GATE scores are also being used by several Indian public sector undertakings (i.e., government-owned companies) for recruiting graduate engineers in entry-level positions. It is one of the most competitive examinations in India.

We offer online coaching for the following gate discipline along with 21 other disciplines.

Physics – GATE Syllabus

Mathematical Physics: Linear vector space; matrices; vector calculus; linear differential equations; elements of complex analysis; Laplace transforms, Fourier analysis, elementary ideas about tensors.

Classical Mechanics: Conservation laws; central forces, Kepler problem and planetary motion; collisions and scattering in laboratory and centre of mass frames; mechanics of system of particles; rigid body dynamics; moment of inertia tensor; noninertial frames and pseudo forces; variational principle; Lagrange’s and Hamilton’s formalisms; equation of motion, cyclic coordinates, Poisson bracket; periodic motion, small oscillations, normal modes; special theory of relativity – Lorentz transformations, relativistic kinematics, mass-energy equivalence.

Electromagnetic Theory: Solution of electrostatic and magnetostatic problems includingboundary value problems;dielectrics andconductors; Biot-Savart’s and Ampere’s laws; Faraday’s law; Maxwell’s equations; scalar and vector potentials; Coulomb and Lorentz gauges; Electromagnetic waves and their reflection, refraction, interference, diffraction and polarization. Poynting vector, Poynting theorem, energy and momentum of electromagnetic waves; radiation from a moving charge.

Quantum Mechanics: Physical basis of quantum mechanics; uncertainty principle; Schrodinger equation; one, two and three dimensional potential problems; particle in a box, harmonic oscillator, hydrogen atom; linear vectors and operators in Hilbert space; angular momentum and spin; addition of angular momenta; time independent perturbation theory; elementary scattering theory.

Thermodynamics and Statistical Physics: Laws of thermodynamics; macrostates and microstates; phase space; probability ensembles; partition function, free energy, calculation of thermodynamic quantities; classical and quantum statistics; degenerate Fermi gas; black body radiation and Planck’s distribution law; Bose-Einstein condensation; first and second order phase transitions, critical point.

Atomic and Molecular Physics: Spectra of one- and many-electron atoms; LS and jj coupling; hyperfine structure; Zeeman and Stark effects; electric dipole transitions and selection rules; X-ray spectra; rotational and vibrational spectra of diatomic molecules; electronic transition in diatomic molecules, Franck-Condon principle; Raman effect; NMR and ESR; lasers.

Solid State Physics: Elements of crystallography; diffraction methods for structure determination; bonding in solids; elastic properties of solids; defects in crystals; lattice vibrations and thermal properties of solids; free electron theory; band theory of solids; metals, semiconductors and insulators; transport properties; optical, dielectric and magnetic properties of solids; elements of superconductivity.

Nuclear and Particle Physics: Nuclear radii and charge distributions, nuclear binding energy, Electric and magnetic moments; nuclear models, liquid drop model – semi-empirical mass formula, Fermi gas model of nucleus, nuclear shell model; nuclear force and two nucleon problem; Alpha decay, Beta-decay, electromagnetic transitions in nuclei;Rutherford scattering,nuclear reactions, conservation laws; fission and fusion;particle accelerators and detectors; elementary particles, photons, baryons, mesons and leptons; quark model.

Electronics: Network analysis; semiconductor devices; Bipolar Junction Transistors, Field Effect Transistors, amplifier and oscillator circuits; operational amplifier, negative feedback circuits ,active filters and oscillators; rectifier circuits, regulated power supplies; basic digital logic circuits, sequential circuits, flip-flops, counters, registers, A/D and D/A conversion.

About Online Coaching:
Fully interactive Online Live classroom, where the Trainer deliver lecture through electronic blackboard and audio visual conferencing with presentation. Students can interact through microphone. Registered students will get an unique ID and password. Using this unique ID students can to login to the portal to join the online class. PPT and Recorded Session can be downloaded after the completion of every classes, also can view the session online Pre-requisites:

  • Computer/Laptop/Smartphone with Internet connection
  • Headset with Microphone for Computer